Statistical results for system identification based on quantized observations

نویسندگان

  • Fredrik Gustafsson
  • Rickard Karlsson
چکیده

System identification based on quantized observations requires either approximations of the quantization noise, leading to suboptimal algorithms, or dedicated algorithms taylored to the quantization noise properties. This contribution studies fundamental issues in estimation that relate directly to the core methods in system identification. As a first contribution, results from statistical quantization theory are surveyed and applied to both moment calculations (mean, variance etc) and the likelihood function of the measured signal. In particular, the role of adding dithering noise at the sensor is studied. The overall message is that taylored dithering noise can considerably simplify the derivation of optimal estimators. The price for this is a decreased signal to noise ratio, and a second contribution is a detailed study of these effects in terms of the Cramér-Rao lower bound. The common additive uniform noise approximation of quantization is discussed, compared, and interpreted in light of the suggested approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Qualitative State Observer

The state estimation of a quantized system (Q.S.) is a challenging problem for designing feedback control and model-based fault diagnosis algorithms. The core of a Q.S. is a continuous variable system whose inputs and outputs are represented by their corresponding quantized values. This paper concerns with state estimation of a Q.S. by a qualitative observer. The presented observer in this pape...

متن کامل

Space and time complexities and sensor threshold selection in quantized identification

This work is concerned with system identification of plants using quantized output observations. We focus on relationships between identification space and time complexities. This problem is of importance for system identification in which data-flow rates are limited due to computer networking, communications, wireless channels, etc. Asymptotic efficiency of empirical measure based algorithms y...

متن کامل

Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs

This paper introduces identification algorithms for finite impulse response systems under quantized output observations and general quantized inputs. While asymptotically efficient algorithms for quantized identification under periodic inputs are available, their counterpart under general inputs has encountered technical difficulties and evaded satisfactory resolutions. Under quantized inputs, ...

متن کامل

A Fundamental Limitation on Maximum Parameter Dimension for Accurate Estimation with Quantized Data

It is revealed that there is a link between the quantization approach employed and the dimension of the vector parameter which can be accurately estimated by a quantized estimation system. A critical quantity called inestimable dimension for quantized data (IDQD) is introduced, which doesn’t depend on the quantization regions and the statistical models of the observations but instead depends on...

متن کامل

A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients

In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2009